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Abstract

Phase change is a very complex physical phenomenon that governs a lot of industrial situations. Due to the
inherent di�culties that arise in manufacturing activities they need a numerical treatment using models to predict
the behavior of the di�erent phases involved in the process. Historically, solidi®cation problems were solved
considering only the solution of an energy balance with isothermal phase change including conduction and or

convection in the material. Nowadays computational ¯uid dynamics is becoming a well-suited numerical technique
to investigate all kind of transport phenomena, especially when coupled ®elds are involved. This trend has addressed
the research in solidi®cation problems towards the solution of models combining incompressible Navier±Stokes

equations coupled with heat and mass transfer including phase change. In this paper we present a phasewise
discontinuous numerical integration method to solve thermal phase change problems in a fast and accurate way.
Moreover, this methodology was extended to coupled ¯uid ¯ow and energy balance equations with success and in a

future work we will apply to binary alloy solidi®cation with macrosegregation. # 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The computational modeling in metallurgical process
is becoming more and more attractive during the last
decade mainly because the di�culties to make obser-

vations of ¯uid ¯ow inside molds, the fact that the
molds and the molten metal are opaque, the tempera-
tures are very high and the conditions are highly tran-

sient and risky. Therefore, computational ¯uid
dynamics (CFD) is usually the most economical and
practical way to get information about what is going

on inside a casting device and it is often the only feas-

ible way. Besides these technical and economical
reasons there are some others related with the math-
ematical complexity to treat industrial scale solidi®ca-
tion problems. Absorption or release of latent heat

makes phase change problems nonlinear and exact sol-
utions are only restricted to few problems involving
pure substances in very simple domains. The inability

of these solutions to address multidimensional e�ects,
non-discrete or non-isothermal phase change, advec-
tion dominated situations, has moved the attention

towards numerical procedures. In thermal phase
change problems it is very popular to divide the nu-
merical methods in two main methodologies: multiple
region or variable grid methods, where independent

conservation equations for each phase are formulated
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and they are coupled by boundary conditions at the
interface, and single region or ®xed grid formulation
that are generally developed from volume-averaged

techniques based on classical mixture theory or by a
continuum formulation. They eliminate the need for
separate phase conservation equations producing one

phase form models for the mixture. In the solidi®ca-
tion of industrial alloy the several di�erent substances
are generally added to improve the quality of the cast

yield. This multicomponent mixture promotes a phase
change that covers a temperature range with a beha-
vior that depends on phase change environment, com-
position and thermodynamic descriptions of speci®c

phase transformation. Assuming no phase transition in
the solidi®cation process we focus only on liquid±solid
phase change occurring in a region called mushy zone

where both phases are present. This zone is often
formed by solid dendrites and interdendritic liquid that
separates the fully solidi®ed and melted regions as a

permeable crystalline-like matrix coexisting with the
liquid phase. Dendrites grow naturally due to a nuclea-
tion mechanism with an inherent scale of the order of

10 mm and with a highly irregular morphology. This
fact makes the single domain techniques more attrac-
tive. Early attempts to treat conduction phase change
problems using continuum formulation have shown to

be successful. Bennon and Incropera [1] have extended
its application to advection dominated ¯ows coupling
momentum, heat and species transfer in binary alloy,

starting a very interesting scienti®c discussion about
mathematical modeling of these phenomena.
Considerations about multiphase region morphology

and relative phase velocities were addressed in this

paper. Others single domain models of binary solidi®-
cation have presented in recent years. Voller and
Prakash [2] and Voller et al. [3,4] have used this for-

mulation for coupling momentum, energy and mass
transfer in solidi®cation problems. They have focused
their attention in di�erent ways to model the interface

interaction assuming di�erent morphology for solid
and liquid phases. Beckermann and Viskanta [5] chose
to cite volume-averaging literature instead of mixture

literature as a justi®cation for the conservation
equations associated with individual phases. Ganesan
and Poirier [6] have begun a fruitful discussion since
they stated that both approaches, volume-averaged

and continuum formulation, were quite di�erent.
Prescott et al. [7] have demonstrated that the two
models yield essentially equivalent results. While con-

tinuum formulation is questionable by the way in
which phase interactions source terms appear, also it
should be mentioned that volume-averaged approach

needs some additional information to be supplied con-
cerning with the treatment of mathematical operators
applied to volume-averaged quantities. Other explicit

goal of continuum formulation is that related to put
the conservation equations in a single-phase (mixture)
form adding source terms to arrive to the right balance
equations. This methodology makes continuum formu-

lation very suitable to be solved by standard CFD
codes and to clarify the physical meaning of the di�er-
ent terms. On the other hand the volume-averaged

approach generally arrives to a momentum transfer
equation expressed in terms of liquid phase velocity
instead of mixture velocity. Moreover, the dominant

physical mechanisms governing ¯uid ¯ow in the mushy

Nomenclature

Cp speci®c heat capacity
c solute concentration
f mass fraction

g gravity acceleration
h grid size
I second order identity tensor

Kp permeability tensor
kp partition coe�cient
L speci®c latent heat

ml slope of the liquidus line
p pressure
Ste Stefan number
T temperature

t time
Tm melting point of pure metal
Uin pouring velocity (continuous casting problem)

u velocity

Greek symbols
Db volumetric expansion coe�cient

EEE strain rate tensor
k thermal conductivity
r density

sss stress tensor
m dynamic viscosity

Subscripts
1 reference value

l liquid phase
s solid phase
T transpose
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zone are quite di�erent from those belonging to the
whole liquid region, so the continuum formulation

needs some criteria for neglecting or retaining terms
according to the phase involved. In this work a special
numerical integration method based on temperature

model is introduced in order to avoid some of the di�-
culties introduced by the discontinuities presented in
most of the ®xed grid phase change formulations. In

this way it is possible to get the exact Jacobian matrix
of the Newton scheme retaining the quadratic conver-
gence rate. This strategy was extended to include the

solution of thermally coupled ¯uid ¯ow with phase
change and it has shown to be very e�cient in several
tests. Another important remark is about the robust-
ness of this strategy to solve not only mushy phase

change, also almost isothermal phase change problems.
This idea was originally presented as a discontinuous
integration scheme by Steven [8] to solve Poisson

equation with discontinuous coe�cients and lately by
Crivelli et al. [9] and Storti [10] for isothermal phase
change problems. In recent papers Fachinotti et al.

[11,12] have adopted this technique to solve the con-
ductive and/or convective heat equation with isother-
mal or mushy phase change, oriented to continuous

casting processes. In these last two papers the authors
have adopted an exact integration scheme only over
the phase change terms. We emphasize that the central
contribution of this paper is around the phasewise nu-

merical integration to solve incompressible Navier±
Stokes equations augmented by mushy or almost iso-
thermal phase change equation in a monolithic way.

The layout of this paper is as follows: Section 2 intro-
duces the mathematical model used for the solidi®ca-
tion process. Section 3 deals with the numerical

discretization of the problem and the following shows
particularly details about the phasewise numerical inte-
gration method. Finally numerical results and con-
clusions are presented.

2. Mathematical modeling

The conservation equations have been derived on

the basis of a continuum model for binary alloy [1]. In
the continuum model classical mixture theory is used
to develop the governing equations for the entire

domain. The unknown variables of these single-phase
models are usually the mixture properties.

2.1. Conservation equations

Taking the same assumptions as in the paper of

Bennon and Incropera [1] we arrive to the following
set of conservation equations:

Mass conservation

@

@ t
r� r � �ru� � 0 �1�

Momentum conservation

r

�
@u

@ t
� u � ru

�
ÿ r � sss

� ÿrgDbT�Tÿ T1� ÿ rgDbC�cÿ c1�

ÿmlK
ÿ1
p �uÿ us �

sss � ÿpI� 2mEEE�u�, EEE�u� � 1

2

ÿ
ru� �ru�T

�
m � fsms � flml �2�
having considered equal density values for both solid
and liquid phases and the following assumptions:

1. there are only two phases, liquid and solid,
2. constant phase densities,
3. solid matrix is free of internal stress,

4. solid matrix translates at a prescribed velocity us,
5. viscous stress from local density gradients are negli-

gible r� rrl
� � 0,

6. the ¯uid is assumed to behave as Newtonian with m
as the dynamic viscosity.

Even though the turbulence plays a central role in the
de®nition of transport properties here we neglects its
in¯uence assuming a laminar viscosity for the liquid

phase ml: The material solidi®cation that takes place
within the mushy zone produces a decrement of the
mixture velocity. This e�ect may be modeled assuming
an augmented viscosity for the solid phase or treating

the mushy region as a porous medium. While in the
former case the solid phase viscosity is enlarged by a
factor fmushy relative to the liquid viscosity, in the latter

one the morphology of the mushy region is character-
ized by a permeability tensor Kp obtained by exper-
imental evidences. Even though the incompressibility

hypothesis does not allow density variations, these
may be incorporated as buoyancy forces in the
momentum equations. In this work the Boussinesq lin-
ear theory is used to account for the contraction and

the expansion of the material due to local thermal and
solutal gradients. In Eq. (2) DbT and DbC represent the
thermal and solutal volumetric expansion coe�cients

and T1, c1 represent the temperature and the solutal
concentration reference values used for the constant
density computation.
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Energy conservation

@

@ t
T� r � �uT�

� r �
� k
rCp

rT
�
ÿ L

Cp

�
@

@ t
fl � r � �us fl �

�

k � fsks � flkl, �3�
where, for simplicity, we have assumed that both
phases have the same density and speci®c heat

�rs � rl � r, Cps
� Cpl

� Cp� with constant values.
Also we have used the assumption of saturated systems
� fs � fl � 1� with k representing the mixture conduc-
tivity.

2.2. Closure equations

In order to complete the mathematical model it is
necessary to introduce the closure equations.

2.2.1. Thermodynamic equilibrium at interface
First, we need some relationships between tempera-

ture and concentration given by experimental evi-
dences. In binary systems it is very common to use a

thermodynamic equilibrium diagram that allows to
relate solid and liquid solute concentrations with tem-
perature as:

cl � cl�T� � c

1� fs
ÿ
kp ÿ 1

� , cs � cs�T� � kpcl,

Tl � Tm �ml c

�4�

where kp is the partition coe�cient, ml is the liquidus
line slope and c is the solute concentration in the

binary mixture. On the other hand it is necessary to
introduce some law for the solid fraction in terms of
temperature and concentrations. While lever rule is
preferred in those situations with high back di�usion

in the solid phase (typical of iron carbon systems),
Scheil law may be used in the other extreme situation,
where the assumption is no solid phase di�usion with

perfect mixing in the liquid phase. In the former case
the expression for the liquid fraction is as follows:

fl � 1ÿ 1

1ÿ kp

Tÿ Tl

Tÿ Tm

� 1ÿ fs �5�

2.2.2. Mushy region treatment
For solving incompressible Navier±Stokes applied to

solidi®cation problems, it is necessary to include some
numerical strategy to treat the in¯uence of material
solidi®cation over the velocity ®eld. Experimental evi-
dences show that the ¯ow in the vicinity of the phase

change region is induced to adopt the solid phase vel-
ocity. To do this, several authors prefer to choose a

very large viscosity value for the solid phase (augmen-
ted viscosity) while others prefer to restrict the velocity
®eld assuming that this region is similar to a porous

medium, characterized by a permeability tensor. While
in the former the solid viscosity is de®ned as
ms � fmushyml, in the later the de®nition of the per-

meability tensor follows the Karman±Kozeny law. In
this paper we have adopted an isotropic tensor charac-
terized by

Kp � f 3l
D1�1ÿ fl �2

I, D1 � 180

d 2
dend

�6�

where ddend�10:01 m) represents the dendritic second-

ary arm spacing.

3. Numerical discretization

The incompressible Navier±Stokes equations
coupled with energy and species conservation

equations with mushy phase change are spatially dis-
cretized by ®nite elements. As it is very well known the
incompressibility and advection terms play a crucial
role in ®nding the numerical solution to the mathemat-

ical model presented in the above section. The former
is responsible for numerical instabilities in the pressure
®eld producing checkerboard modes in the solution

that may be avoided using an adequate pair of interp-
olation functions for velocities and pressure.
Historically the CFD scienti®c community has adopted

mixed elements to solve incompressible Navier±Stokes
equations at low Reynolds number, needing the usage
of some numerical stabilization on the velocity ®eld to

achieve reasonable results when using Galerkin method
at high Reynolds numbers. During the last decade
there is a strong tendency to use equal order interp-
olation functions with some stabilization in order to

circumvent both numerical instabilities, incompressibil-
ity modes and advection dominated ¯ows. Among the
large amount of stabilized equal order numerical

schemes the SUPG-PSPG [13] seems to be very e�ec-
tive, simple and robust and due to these reasons it was
adopted for this work. For the energy and species bal-

ances we have chosen an SUPG ®nite element method
[14]. In the next sections we describe in more details an
e�cient and accurate method to solve not only single-

phase change problems but also coupled solidi®cation
problems.

4. Phasewise numerical integration

As we have mentioned in Section 1, in this paper we
present a fast and accurate methodology to solve
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mushy phase change problems based on temperature
model. This technique was especially designed to treat

non-isothermal problems but also it has shown to be
very robust to solve a broad range of situations includ-
ing very thin mushy zone problems. This strategy is

classi®ed as a ®xed grid method but in some sense it
works like a variable grid method adding the contri-
bution of each phase in a separate way. Here we

extend this technique using a numerical quadrature in-
tegration method well suited to most of the ®nite el-
ement codes and this discontinuous integration is

applied to the coupled momentum, heat and mass
transfer equations. So, it is possible to use the very
attractive features of this technique to solve coupled
®eld problems where material properties could have

sharp variations inside those element with more than
one phase. In the next section we present details about
this strategy applied to thermal problems with mushy

phase change. The extension of this methodology to
solve coupled incompressible Navier±Stokes equations
with thermal phase change, typical model of a lot of

industrial casting processes is straightforward.

4.1. The thermal phase change case with conduction and

convection

The application of the phasewise discontinuous inte-
gration method for the solution of thermal phase

change problems consists of dividing the element inte-
gration domain in several element subdomains accord-
ing to the distribution of phases within the element. In

this work we have restricted the methodology only to
triangular type elements and the extension to tetrahe-
dral elements is straightforward. In each iteration the

nodal solid fraction of each element is computed and
the corresponding case is detected. Fig. 1 shows one
example for each di�erent situation taken into account
in this development. In this ®gure the original triangu-

lar element of nodes A, B, C is analyzed according to
the number of interfaces crossing through the element
domain. The notation �I J K� represents the number of

interface-edge intersections at each edge, for example
�1 2 0� represents one intersection at the ®rst edge, two
at the second and no intersection at the third edge.

Two di�erent interfaces cannot intersect an edge at the
same point. So, before computing the contribution of
each element a special routine identi®es the corre-

sponding case according to the nodal solid fraction.
To do this it is necessary to compute the intersection
coordinates at each triangle edge with the solidus and
liquidus line coming from the thermodynamic equi-

librium diagram. This is equivalent to map the triangle
to this diagram. Then the intersections arise from
equalizing the liquidus or solidus line with the edge

line. The following step consists of dividing the orig-
inal triangular domain in several one phase triangular

subdomains. At this stage each quadrangle is divided
in two triangles and each pentagon is divided in three

triangles, so only triangular regions are involved in the
numerical integration task. Once the case is identi®ed,
the contribution of the original element to the

Jacobian matrix and the residual vector is computed as
the sum of several contributions, each one coming
from single-phase triangular subdomains. Then the

thermal residual computation is equivalent to:

RT �
XNe

e�1

XNe 0

e 0�1

�
Oe 0 �T, c�

ÄwT

 
ÿ
�
@T

@ t
� u � rT

�
� r

�
� k
rCp
rT

�
� L

Cp

�
@ fs
@ t
� us � rfs

�!
dOe 0 �7�

with Ne the number of elements in the whole mesh,
Ne 0 the number of triangular subdomains inside each

original element, ÄwT the perturbed weight function of
the thermal equation according to SUPG formulation
[14] and Oe 0 the triangular subdomain. In order to

adapt this computation to standard ®nite element
codes, we need to use only information involving
nodes of each triangular subdomain (1, 2, . . .) and

®nally add their contributions to the nodes of the orig-
inal triangular element �A, B, C� (see Fig. 1). To do
this we de®ne a variable change between the original

coordinates and those belonging to each triangular
subdomain. Let X � �x, y� be a given point interior to
the original element and belonging to only one of the
subdomains shown in Fig. 1. This point may be placed

in terms of the original shape functions w or in terms
of those corresponding to the subdomain just men-
tioned w�: So,

x � wix i � wT

0@ xA

xB

xC

1A � w�i x
�
i � w�T

0@ x 1

x 2

x 3

1A

y � wiyi � wT

0@ yA
yB
yC

1A � w�i y
�
i � w�T

0@ y1
y2
y3

1A

w �
0@wA

wB

wC

1A w� �
0@w1

w2

w3

1A �8�

Aw � A�w�,

A �
0@ 1 1 1
xA xB xC

yA yB yC

1A, A� �
0@ 1 1 1
x 1 x 2 x 3

y1 y2 y3

1A �9�

where xA,B,C and x 1,2,3 are the spatial coordinates of
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both, the original triangle and the triangular subdo-
main (see Fig. 1). The jacobean matrix is computed as
the derivative of the each nodal residue (7) respect to

each nodal temperature using also the phasewise strat-
egy and the transformations (8) and (9) presented
above.

Fig. 1. Phasewise numerical integration method. Identi®cation of possible cases.
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4.2. Extension to coupled ¯uid ¯ow and energy balance
equations

In order to solve the problem in a monolithic way
we adopt for the Navier±Stokes solver a similar strat-

egy as for the energy balance equation. Once the case
is identi®ed and the element domain is divided into
several triangular subdomains, a phasewise numerical

integration is performed using the corresponding
single-phase material coe�cients regardless of the
mathematical continuity of these coe�cients.

5. Numerical examples

In this section we present several numerical appli-

cations in order to check the e�ciency and accuracy of
the present method. We start with two unsteady
mushy phase change tests, we follow with a continuous

casting problem and ®nally we present a static ingot
casting application. The results of these four examples
show a good combination of high accuracy with very

fast convergence rate being a very good alternative to
solve other coupled ®eld phase change problems. All
this examples were performed using a standard line-

searching and backtracking algorithm to improve the
convergence rate.

5.1. Unsteady 1D phase change problem with conduction

The ®rst example is the classic Neumann problem,
i.e., the solidi®cation of an initially liquid semi-in®nite

slab at uniform temperature T0 � 08C, just above
Tm � ÿ0:18C, whose surface temperature suddenly
falls to a constant value Tw � ÿ458C: Besides, we

assume constant thermo-physical properties: conduc-
tivity k � 1:08 W/(m K), heat capacity rCp � 1 J/(8C
m3) and latent heat rL � 70:26 J/m3. Since an analyti-
cal as well as several numerical solutions are available

(see Ref. [11]), this problem poses a valuable bench-
mark for current work. Two meaningful parameters
describing the problem are the Stefan number (latent

to sensible heat ratio) Ste � rL
rc�TmÿTw � ÿ Tw � 1:6, and

the dimensionless temperature T �0 � T0ÿTm

TmÿTw
� 2� 10ÿ3:

The former governs the temperature gradient disconti-
nuity, while the latter is related to the magnitude of
this gradient next to the wall. The solution process per-

formance uses to deteriorate when Ste increases or T �0
decreases [15]. The above-mentioned values lead to a
critical circumstance wherein enthalpy models fail to
converge, unless a large ®ctitious regularization range

were introduced against the isothermal character of the
problem, as demonstrated by Celentano [16]. So, this
example is useful to remark the convergence ability of

the present method. For this particular application the
space-time discretization was h � 0:125 m andDt � 0:1 s.

The current model closely represents the exact re-

sponse, as it is shown in Fig. 2 for the temperature
®eld in the upper plot (at t � 4 s) and the thermal his-
tory (at x � 1 m) in the lower one. Using only one

time step computation Dt � t � 4 s the residual norm
decays quadratically and after eight iterations the con-
vergence is attained �kRk < 10ÿ12). On the other hand,
for Dt � t=40 � 0:1 s the convergence in each time step

is reached in a few iterations, varying from a maxi-
mum of 13 iterations to a minimum of 5 iterations.

5.2. Unsteady planar 2-D nearly isothermal phase
change problem with conduction

The second test o�ers technological interest. It con-
sists of a steel ingot in a mold during early stages of
solidi®cation [11,16]. Its transverse section will be con-

sidered, just a quarter of which will be modeled

Fig. 2. Unsteady 1-D phase change problem with conduction.

N. Nigro et al. / Int. J. Heat Mass Transfer 43 (2000) 1053±1066 1059



because of symmetry conditions (Fig. 3). We assume a
nearly isothermal process �Tm � 15008C� with constant

thermo-physical properties: k � 30 W/(m K), rCp �
5:4� 103 kJ/(8C m3), rL � 1:89� 106 kJ/m3. Since
Ste � 1 and T �0 � 0:1, it seems to be in a more favor-

able situation than the previous example. Rathjen and
Jiji [17] have proposed an analytical solution by simi-
larity transformation for a semiin®nite corner region,

usually taken as a reference for the current problem.
The geometry, boundary conditions and the front

advance with time for a time step of Dt � t=10 are
shown in Fig. 3. This solution and another using Dt �
t are in good agreement with the semi-analytical ex-
pression. Fig. 4 shows both numerical and semi-ana-
lytical solutions for the temperature distribution along

the bisecting line x � y at three di�erent instants: t �
600 s (upper), 2400 s (middle) and 5400 s (lower). The
accuracy of this model to predict the interface location

is as high as expected, no matter how re®ned the time
and space domains are, as it was clearly seen in several
numerical experiments cited on [11]. The performance

of the numerical solution process is outstanding.
Convergence is achieved in a few iterations, typically
20, when using only one time step to reach the ®nal
time, pointing out the e�ciency of the present tangent

scheme. About 10 iterations at each time step was
spent when Dt � t=10 showing a very fast convergence
rate for unsteady phase change simulations.

5.3. Steady 2-D axisymmetric mushy phase change

problem with convection (continuous casting problem)

The third example is devoted to the numerical simu-
lation of a round billet obtained by continuous casting

processing. The problem is described in the upper plot
of Fig. 5. The liquid metal is poured into an open
mould through a nozzle. This water-cooled mould

extracts enough heat from the liquid, solidifying an
external thin shell, which is capable of containing the
melt inside. Fig. 5 shows on the upper left the main

geometrical parameters, at the primary cooling zone
the molten metal is poured through a nozzle of rs
radius and suddenly the ¯ow is expanded ®lling the

whole mould diameter Dm. At the wall the strand is in
contact with a cooper mould cooled by counter¯ow
water, whose length is Lm. Several water sprays, fol-
lowed by rolling until the complete section solidi®es

represent the secondary cooling zone. This process is
considered stationary. On the left plot the shading area
corresponds to the simulated length (Ls). On the right

we have included the main boundary conditions of this
problem, where at the inlet nozzle temperature is ®xed
to Tin � 15308C and at the meniscus, centerline and at

the outlet the normal derivative of temperature is neg-
ligible. At the mould wall we have assumed a heat
¯ow removal given by a heat ¯ux law similar to

Savage±Pritchard

qs

�
W=m2

�
� Aÿ B

�������
z

U0

r
� Cz� dz2 �10�

with z �m� the axial coordinate and us � U0 � 0:03 [m/
s] the casting velocity. We have used the following con-
stant values: A � 2:1974� 106, C � 3:3737� 106,

B � 5:6467� 105, D � 0:16054� 106, adjusted by ex-
perimental measurements to take into account the air

Fig. 3. Unsteady planar 2-D nearly isothermal phase change

problem with conduction. Geometry, boundary conditions

and advance of solidi®cation front.
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gap formation in this zone. At the water sprays a con-
vective boundary condition is imposed, with a ®lm

coe�cient hspray and a water external temperature of
Tamb. Particularly, the material consists of a 0.3 wt%
carbon content steel, with the following properties:

r � 7200 kg/m3, kl � ks � 34 W/(m K), Cp � 680 J/
(kg K), L � 272,000 J/kg, Ts � 14558C, Tl � 14938C,
Tm � 15378C, hspray � 500 W/(m2 K) and Tamb � 408C
The following geometrical data were used: Uin �
0:8895 m/s, Dm � 2� 0:106 m, rs � 0:02 m, Lm � 0:6
m and Ls � 1:5 m.

Thermal conductivity, density and heat capacity are
assumed constant for the current application. The
domain of analysis is extended from the top until a
small distance below the mould, as it is shown by the

shading area in Fig. 5. Let us remark that the complete
solidi®cation of the billet is expected to occur at a dis-
tance greater than 10 m from the bottom of the

mould. We use a structured mesh of 4536 triangles,
2368 nodes. It is denser at the contour, especially next
to the mould. The computed temperature ®eld using

the SUPG formulation is depicted as isocurves in
lower plot of Fig. 5. Fig. 6 plots at the upper part the
axial distribution of temperature at external radius,

just lying on the mould wall and the water sprays.
Maximum di�erences of 58C between this techniques
and an standard method [18] were found. Lower plot
of Fig. 6 shows the convergence rate for the standard

code (named old) and the new methodology presented
in this paper. In less than 10 iterations the residual has
decreased more than 10 orders of magnitude while the

old version demands more than 100 iterations. These
results are in very good agreement with those obtained
by Fachinotti et al. [11] using an exact integration

scheme. For solving this problem the ®xed velocity
®eld was obtained previously by solving the incom-
pressible Navier±Stokes equations with ®xed tempera-
ture and concentration. The boundary conditions for

the inlet and outlet velocities combined with the cast-
ing speed us � U0 satis®ed the mass balance. This vel-
ocity ®eld is kept frozen during the temperature

computation.

5.4. Unsteady Navier±Stokes equations coupled with

mushy phase change problem

This test problem, proposed by Voller and Prakash

[2], consists of freezing an initially liquid material in a
thermal square cavity of size �1� 1� under natural con-
vection. Initially the cavity is completely ®lled with
liquid material at T0 � Th � 0:5 > Tl � 0:1 and the

temperature of the left wall is decreased to
Tc � ÿ0:5 < Ts � ÿ0:1, keeping insulated the top and
bottom cavity walls. So, a phase change is set up.

While the solidus line shows an almost planar shape
the deformation of the liquidus line is more pro-

Fig. 4. Unsteady 2-D planar nearly isothermal phase change

problem with conduction. Temperature along the bisecting

line at (a) t � 600 s, (b) 2400 s and (c) 5400 s.
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Fig. 5. Continuous casting problem. Geometry, boundary conditions and temperature isocurves.
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Fig. 6. Continuous casting problem. Temperature at mould wall and convergence rate.
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nounced due to convective e�ects. The thermal gradi-
ent promotes the establishment of buoyancy forces in

the gravity direction and this phenomenon induces
more convection that enhances the deformation, es-
pecially in the lower wall making the bulge at the bot-

tom more acute. This example was solved by Voller et
al. [2,4] on a set of several grids from 10� 10 to 40�
40 uniform meshes with a ®xed time step of Dt � 10 s

until to a ®nal time of t � 1000 s. In that paper the
authors reported that in each time step almost 50 iter-
ations were used to solve the discretized equations

without under relaxation. They have used a SIMPLE
algorithm outlined by Patankar [19] implemented on
Phoenics code. The main parameters were taken from
Ref. [2]. The performance of our methodology was

successful, with a very fast convergence rate of about
®ve iterations per time step using linesearching and
backtracking. In order to study the in¯uence of nu-

merical di�usion and time accuracy we present results
for di�erent grid size and time step. Fig. 7 plots the
solid liquid interfaces for: (a) Dt � 10 and h � 1=40,
(b) Dt � 10 and h � 1=20, (c) Dt � 1 and h � 1=40:
Solidus (S ) and liquidus (L ) lines at t � 100 and

1000 s are shown. There is a noticeable di�erence

between coarse mesh and ®ne mesh results, but only a
little in¯uence of the time step on the interface move-
ment. This remarkable di�erence may be attributed to
the numerical di�usion introduced by the discrete

scheme. The liquid front movement tends to a planar

advance, typical when the ¯uid is quiescent due to a
viscosity enhancement, being numerical e�ects one of

the main possible reasons. Fig. 8 shows the time evol-
ution of the solid and liquid interfaces at four di�erent
times, t � 100, 250, and 500 and 1000 s using in this

particular case Dt � 10 and h � 1=40: These results are
qualitatively in a good agreement with those presented
by Voller et al. [4]. Fig. 9 presents the velocity ®eld

and the phases distribution at t � 1000 s. The three
isocurves appearing in the plot represent solid fraction
values of fs � 0; 1/2 and 1, being in good agreement

with Voller results [4]. More details about the physical
meaning of these results may be found in Ref. [2,4].
Here, we are only interested in the comparison of both
results with emphasis on accuracy and convergence

rate.

6. Conclusions

This paper has presented a numerical integration

method based on a phasewise criterion to solve solidi®-
cation problems coupled with ¯uid ¯ow. Its e�ciency
has been proved through several examples. We wish to

remark that the discontinuity in the model coe�cients
is not only a drawback for the heat equation, also for
the ¯ow motion. So, the results included in this work
con®rm the success of this strategy for solidi®cation

models that incorporate also the ¯uid ¯ow. This strat-

Fig. 7. Unsteady 2D Navier±Stokes equations coupled with mushy phase change problem. Sensitivity with space and time grid size.
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Fig. 8. Unsteady 2D Navier±Stokes equations coupled with mushy phase change problem. Time evolution of solid and liquid inter-

faces.

Fig. 9. Unsteady 2D Navier±Stokes equations coupled with mushy phase change problem. Velocity ®eld and phases distribution at

t � 1000:
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egy promises to be an interesting possibility to account
for coupled ®eld with mushy or nearly isothermal

phase change as in the case of thermomechanical inter-
action between the mould and the solidi®ed material
or in the macrosegregation analysis of casting process.

Acknowledgements

The authors wish to express their gratitude to

Consejo Nacional de Investigaciones CientõÂ ®cas y
TeÂ cnicas (CONICET, Argentina) for its ®nancial sup-
port.

References

[1] W. Bennon, F. Incropera, A continuum model for

momentum, heat and species transport in binary solid±

liquid phase change systemsÐI. Model formulation, Int.

J. Heat Mass Transfer 30 (10) (1987) 2161±2170.

[2] V. Voller, C. Prakash, A ®xed grid numerical modeling

methodology for convection±di�usion mushy region

phase change problems, Int. J. Heat Mass Transfer 30

(8) (1987) 1709±1719.

[3] V. Voller, A. Brent, C. Prakash, The modeling of heat,

mass and solute transport in soli®cation systems, Int. J.

Heat Mass Transfer 32 (9) (1989) 1719±1731.

[4] V. Voller, A. Brent, C. Prakash, Modeling the mushy

region in a binary alloy, Applied Math. Modeling 14

(1990) 320±326.

[5] C. Beckermann, R. Viskanta, Double di�usive convec-

tion during dendritic solidi®cation of a binary mixture,

PhysicoChem Hydrodyn 10 (1988) 195±213.

[6] S. Ganesan, D. Poirier, Conservation of mass and

momentum for the ¯ow of ®nterdendritic liquid during

solidi®cation, Metallurgical Transactions B 21B (1990)

173±181.

[7] P. Prescott, F. Incropera, W. Bennon, Modeling of den-

dritic solidi®cation systems: reassessment of the con-

tinuum momentum equation, Int. J. Heat Mass Transfer

34 (9) (1991) 2351±2359.

[8] G. Steven, Internally discontinuous ®nite elements for

moving interface problems, Int. J. Numer. Methods Eng

18 (4) (1982) 569±582.

[9] L. Crivelli, S. Idelsohn, A temperature-based ®nite el-

ement solution for phase change problems, Int. J.

Numer. Methods Eng 23 (1986) 99±119.

[10] M. Storti, ModelacioÂ n numeÂ rica de problemas de fron-

tera libre y moÂ vil, Ph.D. Thesis, Universidad Nacional

del Litoral, Santa Fe, Argentina, 1990.

[11] V. Fachinotti, A. Cardona, A. Huespe, A fast conver-

gent and accurate temperature model for phase change

heat conduction, Int. J. Numer. Methods Eng. (1997)

(in press).

[12] V. Fachinotti, A. Cardona, A. Huespe, Numerical simu-

lation of conduction±advection problems with phase

change, in: VII Congreso Latinoamericano de

Transferencia de Calor y Materia, Salta, Argentina,

1998.

[13] T. Tezduyar, S. Mittal, S. Ray, R. Shih, Incompressible

¯ow computations with stabilized bilinear and linear

equal order interpolation velocity±pressure elements,

Comp. Meth. Applied Mech. Engineering 95 (1992)

221±242.

[14] A. Brooks, T.J.R. Hughes, Streamline Upwind/Petrov-

Galerkin formulations for convection dominated ¯ows

with particular emphasis on the incompressible Navier±

Stokes equations, Comp. Meth. Applied Mech.

Engineering 32 (1982) 199±259.

[15] M. Salcudean, Z. Abdullah, On the numerical modeling

of heat transfer during solidi®cation processes, Int. J.

Numer. Methods Eng 25 (1988) 445±473.

[16] D. Celentano, Un modelo termomecaÂ nico para proble-

mas de solidi®cacioÂ n de metales, Ph.D. Thesis,

Universitat PoliteÁ cnica de Catalunya, Escola TeÁ cnica

Superior d'Enginyers de Camins, Canals i Ports,

Barcelona, EspanÄ a, 1994.

[17] K. Rathjen, L. Jiji, Heat conduction with meltingu
[18] S. Idelsohn, N. Nigro, M. Storti, Segregation in con-

tinuous casting processes with coupled solidi®cation and

¯uid ¯ow modeling, Int. J. Forming Process 1 (2) (1998)

135±162.

[19] S. Patankar, Numerical Heat Transfer and Fluid Flow,

Hemisphere, Washington, DC, 1980.

N. Nigro et al. / Int. J. Heat Mass Transfer 43 (2000) 1053±10661066


